38,674 research outputs found

    Heat Fluctuations in Brownian Transducers

    Get PDF
    Heat fluctuation probability distribution function in Brownian transducers operating between two heat reservoirs is studied. We find, both analytically and numerically, that the recently proposed Fluctuation Theorem for Heat Exchange [C. Jarzynski and D. K. Wojcik, Phys. Rev. Lett. 92, 230602 (2004)] has to be modified when the coupling mechanism between both baths is considered. We also extend such relation when external work is present. Our work fixes the domain of applicability of the theorem in more realistic operating systems.Comment: Comments are welcom

    Deconfinement and chiral restoration in nonlocal SU(3) chiral quark models

    Get PDF
    We study the features of nonlocal SU(3) chiral quark models with wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature, introducing the couplings of fermions to the Polyakov loop. We analyze the results obtained for various thermodynamical quantities considering different Polyakov loop potentials and nonlocal form factors, in comparison with data obtained from lattice QCD calculations.Comment: 25 pages, 5 figures. Discussion of results enlarged, figures modified, references added. Version to appear in Physical Review

    Inhomogeneous phases in nonlocal chiral quark models

    Get PDF
    The presence of inhomogeneous phases in the QCD phase diagram is analyzed within chiral quark models that include nonlocal interactions. We work at the mean field level, assuming that the spatial dependence of scalar and pseudo-scalar condensates is given by a dual chiral density wave. Phase diagrams for Gaussian nonlocal form factors are studied in detail and compared with those obtained within the Nambu-Jona-Lasinio model and quark-meson approaches.Comment: 14 pages, 3 figure

    Generalized Ginzburg-Landau approach to inhomogeneous phases in nonlocal chiral quark models

    Get PDF
    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg-Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.Comment: 9 pages, 1 figure. V2: Two references added, figure modified, minor changes in the text introduced. Matches version to be published in Physics Letters
    corecore